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Sensitivity Analysis for Transonic Unsteady
Aeroelastic Constraints
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A method for calculating the sensitivities for transonic unsteady aeroelastic constraints with respect to
structural design variables consisting of skin thicknesses, spar thicknesses, spar cap cross-sectional areas,
and concentrated masses for � ight vehicles in three-dimensional � uid � ow is presented. The method
requires that the transonic unsteady aerodynamics be represented in the frequency or Laplace domain.
In this work the indicial response method is used to transform time-domain aerodynamics found by
solving the transonic small disturbance (TSD) equations into the Laplace domain. The indicial responses
are performed about a static aeroelastic equilibrium found using the TSD equations for the steady aero-
dynamics. Once in the Laplace domain, the unsteady aerodynamics are used to develop semianalytic
equations for the constraint sensitivities. These sensitivity equations include a nonlinear term that is
calculated by � nite differences at a considerable computational cost. This term arises because the indicial
responses are performed about a static aeroelastic equilibrium. If a static rigid equilibrium is used instead,
this term vanishes, producing fully analytic sensitivities. In addition, for the test cases chosen, it is found
that this nonlinear term contributed little to the total gradient calculation and could be ignored. This method
of sensitivity calculation enables formal unsteady aeroelastic optimization in the transonic � ight regime.

Nomenclature
[B] = damping matrix
[B̄] = generalized damping, [F]T[B][F]
b = reference semichord
brij = coef� cient in Laplace representation of unsteady

aerodynamics
L UC , Cp p = lower surface pressure coef� cient, upper surface

pressure coef� cient
CR = reference chord
Crij = coef� cient in Laplace representation of unsteady

aerodynamics
GFACT = constraint normalization factor
((p) = imaginary part of p
i [ 21Ï
[K ] = structural stiffness
[K̄ ] = generalized stiffness, [F]T[K ][F]
k = reduced frequency, based on semichord
[M ] = structural mass
[M̄ ] = generalized mass, [F]T[M ][F]
M` = freestream Mach number
m = number of structural modes participating in the

analysis/design
p [ k(g 1 i ), complex response frequency/eigenvalue
[Q(p)] = generalized aerodynamic matrix
q f = � utter dynamic pressure
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{q( p)} = eigenvector of modal coordinates
5(p) = real part of p
U f = � utter velocity
U` = freestream airspeed
vs = vector of design variables
{ y}T = left-hand eigenvector of � utter equation
Z j = normalized constraint
a0 = static initial angle of attack
g = damping factor
DCP = L UC 2 Cp p

r` = freestream air density
[F] = set of orthogonal structural eigenvectors
vf = � utter frequency
vl = structural natural frequency

Introduction

M ULTIDISCIPLINARY optimization of aircraft structures
requires engineering analyses throughout the � ight re-

gime. Well-established techniques exist for incorporating un-
steady subsonic/supersonic aeroelastic (� utter) analysis/con-
straints in the multidisciplinary design environment.1,2 To date,
minimal work speci� cally associated with structural design
subject to transonic � utter constraints has been presented in
the open literature. The most recent and closely related works
to the research reported here are the investigations done by
Kapania et al.3,4 They calculated analytically and by � nite dif-
ferences the sensitivities of � utter speed with respect to struc-
tural parameters using transonic aerodynamics for a two-di-
mensional airfoil. The unsteady aerodynamics Kapania et al.3,4

used were the analytic indicial response functions developed
by Leishman and Nguyen.5 The structural parameters consid-
ered were those found in the two-degree-of-freedom aeroelas-
tic equations of motion: mass ratio, static unbalance, radius of
gyration, bending frequency, and torsional frequency. Another
related area where much effort has been placed recently is in
the calculation of sensitivities of aerodynamic con� guration
parameters in the presence of nonlinear aerodynamics. This
consists of determining the sensitivities of aerodynamic param-
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eters, e.g., thickness-to-chord ratio, airfoil shape, and plan-
form, with respect to aerodynamic performances such as lift
and drag using nonlinear aerodynamics. As stated by Korivi
et al.,6 these types of sensitivities can be calculated in three
ways; 1) � nite differences, 2) the discrete approach (differen-
tiation of governing equations following their discretization),
and 3) the continuum approach (differentiation of governing
equations prior to numerical discretization). Korivi et al.6 cited
many efforts using the discrete approach applied to all levels
of computational � uid dynamics (CFD), and the work per-
formed by Jorggaard and Burns7 demonstrated the continuum
approach.

The dif� culties associated with transonic � utter analysis is
because of the introduction of nonlinearities into the problem
through the transonic aerodynamic � uid � ow. Transonic � ow
is characterized by mixed subsonic and supersonic � ow with
shocks. To accurately predict the aerodynamic pressures in the
transonic region, nonlinear partial differential equations must
be solved. This paper presents the development of a sensitivity
analysis for � utter constraints in the transonic regime suitable
for the multidisciplinary preliminary design environment.

In this study it is assumed that, at a given static aeroelastic
equilibrium position, the change in dynamic angle of attack
about that equilibrium is small. This assumption implies that
the aerodynamic forces and shock movement will be linear
with a change in the dynamic angle of attack. These assump-
tions enable time-domain computational � uid aerodynamics to
be curve � t into the Laplace domain.8,9 This permits the writing
of linear unsteady aeroelastic equations of motion. Once the
aeroelastic equations of motion are written, techniques such as
the p method or the pk method can be used to determine the
unsteady aeroelastic response.9 This paper uses the linear un-
steady aeroelastic equations and develops semianalytic equa-
tions for the sensitivity analysis of the structural design vari-
ables with respect to the unsteady aeroelastic constraints. Once
the constraint values and gradients are determined, a nonlinear
mathematical programming problem can be formulated for de-
sign. For this work the � nite element method is used to rep-
resent the mass/stiffness distribution of the structure, and the
transonic small disturbance (TSD) equations are used to model
the steady and unsteady aerodynamics.

Flutter Constraint
Using the p method for the � utter analysis the fundamental

equation of motion can be written as10

2
U U 1` `2 2¯ ¯ ¯ ¯p [M ] 1 p[B] 1 [K ] 2 r U [Q(p)]` `FS D S D Gb b 2

3 {q( p)} = 0 (1)

The � utter constraint is de� ned by satisfying requirements
on modal damping at a series of velocities rather than on the
actual � utter speed.2,10,11 This can be expressed as

j = 1, 2 . . . number of velocities
g # g (2a)lj jREQ l = 1, 2 . . . number of modes

or

g 2 glj jREQ
Z = # 0 (2b)j

GFACT

Where gjREQ is the required level of damping at the jth velocity,
and glj is the calculated damping value for the lth mode at the
jth velocity. GFACT is used to scale the constraint value.
GFACT must be used because normalization cannot be done
by gjREQ in view of the fact that gjREQ can take on the value
of zero. For this research a value of 0.1 for GFACT is used in
all cases studied.

Sensitivity of Flutter Constraint with Respect
to Structural Design Variables

Let vs be de� ned as a vector of design variables that are
directly related to the properties of � nite elements such as
thicknesses, cross-sectional areas, and concentrated mass val-
ues. The derivative of the constraint in Eq. (2) with respect to
the design variable is

­Z ­g1j lj
= (3)

­v GFACT ­vs s

Using the de� nition of p in Eq. (1) results in the following
representation of g (the subscripts on g will be dropped from
now on):

g = (p/k) 2 i (4)

Differentiating Eq. (4) with respect to vs and realizing that
g is real and, therefore, so is ­g/­vs, yields

­g 1 ­ ­
= 5(p) 2 g ((p) (5)F G­v k ­v ­vs s s

The gradient of the eigenvalue p can be found by differen-
tiating Eq. (1). Restating Eq. (1) in the following form:

T[F] [W ][F]{q} = 0 (6)

with the adjoint relation

T T{ y} [F] [W ][F] = 0 (7)

where [W ] contains the system matrices in physical coordi-
nates. Differentiating Eq. (6) with respect to vs and premulti-
plying by { y}T gives

­ ­T T T T{ y} [F] [W ][F]{q} 1 { y} [F] [W ][F]{q}
­v ­vs s

­T T1 { y} [F] [W ] [F]{q}
­vs

­T T1 { y} [F] [W ][F] {q} = 0 (8)
­vs

Using Eq. (7), which indicates that the last term in Eq. (8)
vanishes, yields

­ ­T T T T{ y} [F] [W ][F]{q} 1 { y} [F] [W ][F]{q}
­v ­vs s

­T T1 { y } [F] [W ] [F]{q} = 0 (9)h
­vs

Following the procedure developed by Rudisill and Bhatia12

and further re� ned by Haftka and Yates,13 the structural modes
are assumed to be a basis for the system. With this assumption
[F] is considered invariant with respect to vs and, thus, the
­[F]T/­vs, ­[F]/­vs terms in Eq. (9) are assumed zero. This
assumption is valid for small increments in the design varia-
bles. The more modes retained for representing the basis of
the system, the larger the increment allowed in the design var-
iables. Reference 10 makes a similar assumption and Refs. 13
and 14 give discussions of the effects of this assumption. With
this in mind, Eq. (9) can be expanded and takes the form

2 2
U ­p U ­ U ­p` ` `T 2¯ ¯ ¯{ y} 2p [M ] 1 p [M ] 1 [B]F S D S D S Db ­v b ­v b ­vs s s

U ­ ­ 1 ­` 2¯ ¯ ¯1 p [B] 1 [K ] 2 r U [Q( p)] {q} = 0` `S D Gb ­v ­v 2 ­vs s s

(10)
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Fig. 2 Rectangular wing static aeroelastic deformation (M` =
0.85, a0 = 0.5 deg, and q` = 86.0 psf ).

Fig. 1 Rectangular wing planform and CFD mesh (39 3 15 on
wing).

Table 1 Rectangular wing modes

Mode Frequency, Hz Mode type

1 1.9789 First bending
2 3.9224 First torsion

Equation (10) involves the derivatives of the generalized
mass, stiffness, damping, and aerodynamic matrices with re-
spect to the design variables. Reference 10 shows the calcu-
lation of these terms along with the determination of ­g/­vs

for unsteady aerodynamics calculated by the doublet lattice
method. For the doublet lattice method the [Q(p)] matrix is
dependent on M` and k. This allows for straightforward cal-
culation of the ­[Q̄(p)]/­vs term in Eq. (10). For the linearized
TSD, unsteady aerodynamics [Q̄(p)] is not only a function of
M` and k (p in this case), but also a function of the initial
conditions and the static aeroelastic equilibrium position. Also
note that [Q̄(p)] is a function of the eigenmatrix [F], but re-
calling the previous assumption concerning ­[F]/­vs implies
that the sensitivities of these terms are zero for small incre-
ments in the design variables. Using the approximation for
[Q̄(p)] developed in Refs. 8 and 9, [Q̄( p)] can be expressed
in terms of p as

n
Crij2¯ ¯[Q( p)] = Q ( p) = 4b 2p (11)ij O S D2p 1 brr=1 i j

Where and are determined by curve � tting the time-C br rij ij

domain indicial responses, and the ij subscripts represent the
ijth entry in the [Q̄(p)] matrix. Because [Q̄(p)] is found
through a set of equations that were developed in modal co-
ordinates, i.e., it depends on the natural frequencies of the
structure vl, the chain rule of differentiation can be applied to
Eq. (11) to determine the derivative of the generalized aero-
dynamic matrix with respect to the design variables. This yields

­ ­ ­p2¯ ¯[Q(p)] = 4b [Q(p)]F S D­v ­p ­vs s

m
­ ­vl¯1 [Q( p)] (12)O S D S DG­v ­vl sl=1

Substituting this into Eq. (10) gives

2 2
U ­p U ­` `T 2¯ ¯{ y} 2p [M ] 1 p [M ]F S D S Db ­v b ­vs s

U ­p U ­ ­` `¯ ¯ ¯1 [B] 1 p [B] 1 [K ]S D S Db ­v b ­v ­vs s s

1 ­ ­p2 2 ¯2 r U (4b ) [Q(p)]` ` F S D2 ­p ­vs

m
­ ­vl¯1 Q[(p)] {q} = 0 (13)O S D S DGG­v ­vl sl=1

Noting that every term in Eq. (13) is a complex scalar, ­p/­vs

can be found to be

2
­p U ­`2 T ¯= 2p { y} [M ]{q}F S D­v b ­vs s

U ­ ­` T T¯ ¯2 p { y} [B]{q} 2 { y} [K ]{q}S Db ­v ­vs s

m
1 ­ ­vl2 2 T ¯1 r U (4b ){ y} Q[(p)] {q}` ` FO S D S DG G2 ­v ­vl sl=1

2
U U` `T T¯ ¯2p { y} [M ]{q} 1 { y} [B]{q}YF S D S Db b

1 ­2 2 T ¯2 r U (4b ){ y} [Q(p)]{q} (14)` ` G2 ­p

Here ­p/­vs is, in general, a complex quantity that can be used
to complete the evaluation of ­l/­vs in Eq. (5). All terms
in Eq. (14) can be found analytically except for the term

­[Q̄(p)]/­vl, which must be determined numerically. The de-
rivative of terms containing the mass, stiffness, damping, and
natural frequencies with respect to the design variable are de-
termined using the procedures in Ref. 10. They are excluded
here for briefness.

The two remaining terms needed to complete the evaluation
of Eq. (14) are (­/­p)[Q̄(p)] and ­[Q̄( p)]/­vl. The � rst term
(­/­p)[Q̄( p)] can be found explicitly by differentiating Eq. (11)
with respect to p, with 4b2 factored out earlier

n nC 4pCr r­ i j ij¯[Q( p)] = 2 2 (15)O O 2­p 2p 1 b (2p 1 b )r rr=1 r=1ij ij

The second term ­[Q̄( p)]/­vl is not so easily computed. This
term must be found numerically. For this work the term is
computed by forward � nite difference.

It is worthwhile to discuss the computational cost of eval-
uating Eq. (14). When using the indicial response method, if
m structural modes are kept in the analysis then m 1 1 (one
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Fig. 3 Rectangular wing aeroelastic pressure coef� cients (M` = 0.85, a0 = 0.5 deg, and q` = 86.0 psf ).

Fig. 4 Rectangular wing U` vs g (M` = 0.85, a = 0.5 deg, and
r` = 1.910E204 slugs/ft3).

Table 2 Rectangular wing constraint valuea

Mode
number

Constraint value @, ft/s

800 850 1000 1150

1 20.01035 20.00576 0.01742 0.06940
2 20.28870 20.31910 20.42490 20.56820
a
M` = 0.85, a = 0.5 deg, and r` = 1.910E204 slugs/ft3.

for the static aeroelastic solution and m for the indicial re-
sponses) CFD time integrations are required to get the un-
steady aerodynamics in the Laplace domain. Because all of
Eq. (14) is analytic except for ­[Q(p)]/­vl, no additional CFD
solutions would be required if the ­[Q̄(p)]/­vl term could be
ignored. To calculate the ­[Q̄( p)]/­vl term by forward � nite
differences requires an additional m(m 1 1) time integration.
This m(m 1 1) results from m time integrations for the per-
turbation of each vl to calculate the perturbed static aeroelastic
equilibrium, and m 3 m time integrations to perform the in-
dicial responses about these perturbed static aeroelastic states.
It is also important to note that if the static equilibrium is a

rigid solution instead of an aeroelastic solution, the ­[Q̄(p)]/
­vl is identically zero. Therefore, it is essential to evaluate the
contribution of ­[Q̄( p)]/­vl to the total gradient and determine
if it can be neglected, thus resulting in signi� cant savings of
computational effort. Finally, if the ­[Q̄(p)]/­vl could be found
by differentiating the static aeroelastic equations, the number
of additional time integrations to determine the sensitivities
would be reduced to m.

Sensitivity Analysis Examples
To demonstrate the preceding derivations two wing models

are considered. The � rst is a rectangular, unswept, untapered
planform that uses a beam representation for the structure. The
second is a swept, tapered, � ghter planform where the structure
is represented by a built-up � nite element wing box. A Cray
Y-MP is employed for all of the TSD computations, therefore
some computer resource usage is reported on these examples.
The intent of presenting the computer resource information is
to give a rough order-of-magnitude estimate on the time nec-
essary to perform the calculations, and as a basis of compar-
ison for the different computations done within the present
research.
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Table 3 Rectangular wing gradient termsa

­Z j

­vs

Includes ,
¯­[Q]

­vs

no
¯­[Q] ­[F]

,
­[F] ­vs

Analytical
Finite

difference

No ,
¯­[Q]

­vs

no
¯­[Q] ­[F]

,
­[F] ­vs

Analytical
Finite

difference

Includes ,
¯­[Q]

­vs

includes
¯­[Q] ­[F]

,
­[F] ­vs

Finite
difference

= 800
­ZÙ

­v1

20.5442 20.5453 20.5653 20.5648 20.5423

= 850
­ZÙ

­v1

20.7262 20.7267 20.7455 20.7445 20.7220

­ZÙ

= 1000
­v1

21.7099 21.7091 21.7345 21.7332 21.7104

­ZÙ

= 1150
­v1

24.4704 24.4656 24.5144 24.5110 24.4948

­ZÙ

= 800
­v2

0.0156 0.0149 0.0191 0.0188 0.0166

­ZÙ

= 850
­v2

0.0136 0.0130 0.0183 0.0183 0.0146

­ZÙ

= 1000
­v2

0.0000 20.0011 0.0069 0.0069 0.0027

­ZÙ

= 1150
­v2

20.0532 20.0549 20.0456 20.0465 20.0431

a
M` = 0.85, a0 = 0.5 deg, and r` = 1.910E204 slugs/ft3.

Fig. 5 Fighter wing � nite element model, CFD mesh (39 3 15
on wing) and planform.

Description of Rectangular Wing Example

The rectangular wing selected was used in Ref. 15 to dem-
onstrate transonic � utter predictions. The wing has a moderate
aspect ratio, a 6% parabolic airfoil, and a uniform cantilever
beam represents the structural model (Fig. 1). Rectangular
wing structural parameters are as follows: mass = 11.19 slugs/
ft, torsional moment of inertia = 29.145 slug-ft2/ft, static un-
balance = 6.705 slug-ft/ft2, bending stiffness = 23.66E16
lbs-ft2, and torsional stiffness = 2.39E16 lbs-ft2. Calculated
natural frequencies and modal descriptions are given in Table
1. The � ight condition chosen is Mach number 0.85 and a0 =
0.5 deg. The small disturbance model (Fig. 1) consists of a 60
3 23 3 40 mesh with 39 chordwise grids and 15 spanwise
grids on the wing. Because the small disturbance mesh differed
from the structural mesh, transformation of the mode shapes
from the structural mesh to the CFD grid is required. This is
accomplished by using the in� nite plate spline in Ref. 16.

Static Aeroelastic and Flutter Analysis of Rectangular Wing

The analysis of the wing consists of static aeroelastic and
� utter analyses. To perform a static aeroelastic analysis of the
wing, a dynamic pressure has to be selected. Using the com-
putational aeroelastic program– transonic small disturbance
(CAP – TSD)17 system to integrate the aeroelastic equations of
motion in time, a � utter dynamic pressure (q f ’ 86.0 psf ) is
found for M` = 0.85 and a0 = 0.5 deg. This corresponds to a

� utter frequency of v f ’ 2.09 Hz and a � utter velocity of Uf =
948.9 ft/s. This � utter dynamic pressure is used for the static
aeroelastic analysis and as a comparison to evaluate the accu-
racy of the � utter dynamic pressure calculated presently by the
indicial response method (IRM) implemented into CAP– TSD.9

Using a dynamic pressure of 86.0 psf, a static aeroelastic
equilibrium is determined. Figure 2 shows the static aeroelastic
deformation of the wing. Figure 3 shows plots of coef� cients
of pressure for the upper surface , lower surface , andU L(C ) (C )p p

difference between the upper and lower surfaces (DCp) of the
wing at four spanwise stations for the given condition. These
plots show that a shock has begun to develop on the upper
surface of the wing that is stronger at the root and weakens as
it progresses along the span. Using the static aeroelastic de-
formations as initial conditions, the indicial response method
is used to determine the unsteady aerodynamic forces in the
Laplace domain. Once in the Laplace domain, the unsteady
aerodynamics are used in Eq. (1) for � utter analysis and
Eq. (14) for the sensitivity analysis. Using Eq. (1) and a mod-
i� ed version of the automated structural optimization system
(ASTROS),1 q f using the indicial aerodynamics is predicted to
be 77.1 psf with a � utter frequency v f of 2.07 Hz and a � utter
velocity Uf of 899.1 ft/s. This produces about a 5% difference
in � utter velocity when compared to the � utter velocity found
using time integration, which is considered acceptable. Figure
4 is a U` 2 g diagram of the � utter analysis. The computa-
tional resources necessary to determine the � utter parameters
by the indicial response method (IRM) for this case requires
approximately 20 min of YMP CPU. This includes both the
static aeroelastic calculations and the indicial responses.

Sensitivity Analysis of the Rectangular Wing

Two design variables are selected for the wing: the height
and width of the beam, which serve as the main and only spar
for the wing. Assuming a rectangular cross section, the initial
width (v1) and height (v2) of the section is found to be 0.2509
and 0.9092 ft, respectively. It is noted that these dimensions
extend beyond the 6% parabolic airfoil used for the wing. This
is because of the selection of a rectangular cross section of the
main structural beam that serves no aerodynamic purpose.
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Fig. 6 Fighter wing � rst four fundamental mode shapes and frequencies.

Fig. 7 Fighter wing static aeroelastic deformation (M` = 0.93, a0

= 0.5 deg, and q` = 51.0 psi).

To demonstrate the sensitivity analysis calculation, a con-
straint is set to increase the � utter velocity by 15% (from 899.1
to 1122.8 ft/s). This translates to a constraint that requires the
damping to be less than or equal to zero for velocities less
than 1112.8 ft/s for all modes participating in the � utter anal-
ysis. The constraints are evaluated at four velocities for each
mode and are found in Table 2. A positive value for a con-
straint indicates a violation, a negative value indicates satis-
faction, and a value of zero is an indication that the constraint
is exactly on the boundary between violation and satisfaction.
The derivatives of the four constraints for mode 1 with respect
to the design variables are calculated in � ve different fashions;
two analytically and three by � nite differences. Table 3 sum-
marizes these results. The second column in Table 3 lists the
sensitivities calculated using Eqs. (3), (5), and (14); these
should compare to the � nite difference sensitivities found in
column three. Table 3 shows that for both v1 and v2 the analytic
and � nite difference are in excellent agreement (less than 1
and 5% for v1 and v2, respectively). Columns four and � ve of
Table 3 are the sensitivities excluding the nonlinear term
(­[Q̄(p)]/­vl)(­vl /­vs) in Eq. (14). Again, excellent agreement
is found between the analytic and the � nite difference sensi-
tivities. When comparing columns two and four in Table 3,
the effect of the nonlinear term (­[Q̄( p)]/­vl)(­vl/­vs) can be
evaluated. For v1, the difference between columns two and four
is, in general, less than 5%. For design variable v2, comparing
columns two and four indicates some differences between the

sensitivities found including and excluding the nonlinear term
when based on percentages. Care must be taken when evalu-
ating these differences. The sensitivities of v2 are one to two
orders of magnitude smaller than the sensitivities associated
with v1 and are near zero. Although the percentage changes
are signi� cant when comparing the sensitivities for v2 in
columns two and four of Table 3, the absolute differences
are negligible. This implies, at least for this problem, the
(­[Q(p)]/­vl)(­vl /­vs) term can be neglected resulting in a
large computational savings (six CFD and about 1 h of Cray-
YMP CPU).

As a � nal calculation, the sensitivities are determined by
� nite differences including the change of the [M̄ ], [K̄ ], and
the aerodynamic matrix [Q̄(p)] with respect to the eigenmatrix
[F] and the change of the eigenmatrix [F] with respect to vi.
Neglecting these terms are some of the assumptions that lead
to the derivation of Eq. (10). These sensitivities are found in
column six of Table 3. These sensitivities agree well with those
in columns two and three indicating that the assumptions made
concerning the derivatives with respect to [F] are valid.

Description of Fighter Wing Example

This test case is a modi� ed version of the sample case found
in Ref. 18. For this work the wing structure is terminated at
the wing root (no carry-through attachment) and the overall
mass is scaled to obtain the desired natural frequencies. In
addition, a 4% parabolic airfoil is employed over the entire
wing to include thickness effects. Figure 5 shows the � nite
element model and the small-disturbance � nite difference mesh
that has 60 3 23 3 70 grids overall with 39 chordwise grids
and 15 spanwise grids on wing. Here, only the � rst four natural
vibration modes are used in the analyses. The mode shapes
and the corresponding frequencies are presented in Fig. 6. The
� ight condition selected is Mach number 0.93 and an initial
angle of attack of a0 = 0.5 deg.

Static Aeroelastic and Flutter Analysis of Fighter Wing

As in the previous example, the analysis of the wing consists
of static aeroelastic and � utter analyses. To perform a static
aeroelastic analysis of the wing a dynamic pressure is required.
Using the procedure outlined in the previous example, a � utter
instability is determined with the following results: q f ’ 51.0
psi, v f ’ 19.5 Hz, and U f = 12,459.0 in./s.

With a dynamic pressure of 51.0 psi, the static aeroelastic
equilibrium is found for M = 0.93 and a0 = 0.5 deg. Figure 7
shows the static deformation of the wing, whereas Fig. 8 shows
plots of coef� cients of pressure for the upper and lower sur-
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Fig. 8 Fighter wing pressure coef� cients (M` = 0.93, a0 = 0.5 deg, and q` = 51.0 psi).

Fig. 9 Fighter wing U` vs g (M` = 0.93, a0 = 0.5 deg, r` =
6.571E27 slinches/in.3).

Table 4 Fighter wing constraint valuesa

Mode
number

Constraint value @, in./s

11,000 12,000 13,500 15,000

1 20.5966 20.8035 21.1640 21.4500
2 20.28215 20.4002 0.4950 1.2485
3 22.3970 22.5530 22.5250 21.9500
4 20.8538 20.9871 21.4050 22.3170
a
M` = 0.93, a0 = 0.5 deg, and r` = 6.571E27 slinches/in.3.

faces of the wing at four span stations. These plots show a
fairly strong shock on the upper and lower surface at about
80% chord. Using the unsteady aerodynamics obtained by the
IRM, a q f is found to be 48.4 psi. The corresponding vf and
U f are 19.6 Hz and 12,137.0 in./s, respectively. These are in
excellent agreement with the � utter results computed using
time integration with CAP– TSD. Figure 9 is a U` – g diagram
of the � utter analysis indicating that the second mode couples
with the � rst mode to produce the instability for this case. The
computational resources necessary to determine the � utter pa-
rameters by the IRM for this case is approximately 50 min of
YMP CPU.

Sensitivity Analysis of the Fighter Wing

The 26-structural design variable con� guration of the wing
found in Ref. 18 was selected for this study. To demonstrate
the sensitivity analysis calculation, a constraint was set to in-
crease the � utter velocity by 15%. The constraints were eval-
uated at four velocities for each mode and are found in Table
4. The derivative of the four constraints generated by mode 2
with respect to the design variable v16 associated with the top
and bottom skins in bay two (bay 1 is next to wing root) are
then calculated in � ve different fashions; two analytically and
three by � nite differences. Table 5 summarizes these results.
As in the previous example, the analytic sensitivities in the
second column should compare to the � nite difference sensi-
tivities found in column three. Comparison shows the largest
difference of 7.5% occurring for the constraint at U` = 12,000
in./s and the rest differing by less than 5%. These values are
considered to be in good agreement. Columns four and � ve of
Table 5 are once again the sensitivities excluding the nonlinear
term (­[Q̄( p)]/­vl)(­vl /­vs) in Eq. (14). Again, the results
agree between the analytic and the � nite difference sensitivities
(generally less than 8%). In Table 5, when comparing columns
two to four, and three to � ve, the effect of the nonlinear term
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Table 5 Fighter wing gradient termsa

­Z j

­vs

Includes ,
¯­[Q]

­vs

no
¯­[Q] ­[F]

,
­[F] ­vs

Analytical
Finite

difference

No ,
¯­[Q]

­vs

no
¯­[Q] ­[F]

,
­[F] ­vs

Analytical
Finite

difference

Includes ,
¯­[Q]

­vs

includes
¯­[Q] ­[F]

,
­[F] ­vs

Finite
difference

­ZÙ

=
­v16

11,000

20.1742 20.182 20.1665 20.1875 20.1725

­ZÙ

=
­v16

12,000

20.3170 20.3424 20.3191 20.3390 20.320

­ZÙ

=
­v16

13,500

20.5675 20.5895 20.5654 20.5960 20.550

­ZÙ

=
­v16

15,000

20.8418 20.8600 20.8380 20.8600 20.8150

a
M` = 0.93, a0 = 0.5 deg, and r` = 6.571E27 slinches/in.3.

(­[Q̄(p)]/­vl)(­vl /­vs) can be evaluated. In both cases the dif-
ferences are less than 5%. Implying, as in the previous ex-
ample, the nonlinear term can be neglected eliminating the
need for 20 TSD time integrations (approximately 3 h of CPU
on a Cray Y-MP for this example). This is a signi� cant com-
putational cost savings.

Finally, the sensitivities are determined by � nite differences
including the change with respect to the eigenmatrix [F].
These sensitivities are found in column six of Table 5. These
sensitivities agree well with those in columns two and three,
reinforcing the validity of the assumptions made concerning
the derivatives with respect to [F].

Concluding Remarks
The preceding is a method for calculating the sensitivities

for transonic unsteady aeroelastic constraints with respect to
structural design variables (skin thicknesses, spar thicknesses,
spar cap cross-sectional areas, etc.). The method requires that
the transonic unsteady aerodynamics be represented in the fre-
quency or Laplace domain. In this work the IRM is used to
transform time-domain aerodynamics into the Laplace domain.
The time-domain unsteady aerodynamics are determined by
solving the TSD equations. The indicial responses are per-
formed about a static aeroelastic equilibrium found using the
TSD equations for the steady aerodynamics. Once in the La-
place domain, the unsteady aerodynamics are used to develop
semianalytic equations for the constraint sensitivities. These
sensitivity equations include a nonlinear term that is calculated
by � nite differences at a considerable computational cost. This
term arises because the indicial responses are performed about
a static aeroelastic equilibrium. If a static rigid equilibrium is
used instead, this term vanishes, producing fully analytic sen-
sitivities. For the test cases chosen, it is found that this non-
linear term contributes little to the total gradient calculation
and can be ignored. This eliminates m(m 1 1) (m being the
number of modes participating in the design) CFD time inte-
grations, a considerable computational savings. This translates
into about 1 and 3 h of Cray Y-MP CPU savings for the rec-
tangular wing and � ghter wing, respectively. Further test cases
need to be developed and examined to determine if the non-
linear term can be dismissed in general when using a static
aeroelastic equilibrium as an initial condition for indicial re-
sponses. Finally, this method of sensitivity calculation enables
formal unsteady aeroelastic optimization in the transonic � ight
regime.
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